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Here, in a multi-ancestry genome-wide association study meta-analysis
of kidney cancer {29,020 cases and 835,670 controls), we identified 63
susceptibility regions (30 novel) containing 108 independent risk loci. In

analyses stratified by subtype, 52 regions (78 loci) were associated with
clear cell renal cell carcinoma (RCC) and 6 regions (¥ loci) with papillary
RCC. Notably, we report a variant commeon in African ancestry individuals
(rs7629500) in the 3" untranslated region of VHL, nearly tripling clear

cell RCCrisk (odds ratio 2.72, 95% confidence interval 2.23-3.30).In
cis-expression quantitative trait locus analyses, 48 variants from 34
regions point toward 83 candidate genes. Enrichment of hypoxia-inducible
factor-binding sites underscores the importance of hypoxia-related
mechanisms in kidney cancer. Our results advance understanding of
thegenetic architecture of kidney cancer, provide clues for functional
investigation and enable generation of a validated polygenic risk score
with an estimated area under the curve of 0.65 (0.74 including risk factors)
among European ancestry individuals.

Kidney cancer isa commonly diagnosed malignancy with an estimated
430,000 new cases diagnosed worldwide in 2020%. The incidence of
kidney cancer varies internationally; the highest rates are observed
mainly in Western populations, at a 21 male:female ratio®, The 5-year
relative survival for kidney cancer In the United Scates s 785 according
to datatrom the Surveillance, Epidemiclogy and End Results Program
(2013-2009}, ranging From 93% for localized tumors to 175 for cancer
with metastaticspread o distant sites atdiagnosis™. In the United States,
incldenceraces of disease are higheramong American Indian/alaskan
Mative and non-Hispanic Black populations thanamong non-Hispanic
white Americans, while the Hispanic and Asian/Pacific Islander popula-
tionsexperience lower races’, These patterns are probably explained at
least in part by differences inthe prevalence of established risk factors
{For example, obesity, smoking and hypertension)® and, possibly, host
genetic factors.

The most commen form of kidney cancer is renal cell carcinoma
(RCC), derived From epithelial cells. The most common histologic
subtypes of RCC are clear cell (ccRCC: over 75% of RCC cases), papil-
lary {(pRCC; 10%) and chromophobe (chRCC; 5%) carcinomas; rarer
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subtypestogether account for less than 5% of cases®, Highly penetrant,
rare mutations have been describedin 14 genes (BAPY, FLCN, FHL MET,
FPTEN, SDHEB, SDAC, SDHD, FLOC, MITF, PROMIG, TSCL, TSC2and VHL),
accounting for between 3% and 3% of RCC™ ',

The contribution af commaon low-penecrance genetic variants to
kidney cancer heritability has beeninvestigated through progressively
larger genome-wide associgtionstudies (GWAS), The largest previous
GWAS, based on 10,784 cases and 20,406 controls of ELRGpean ances-
try, Idencified 13 susceptibilicy reglons associaced with kidney cancer
risk at genome-wide significance (P = 5 = 10 )", Functional investiga-
tion of select GWAS regions has clucidated local underlying biological
mechanisims, namely altered regulation of key genes in four regions
directly (for example, WYC for 8q24, CCVDI for 11gl3.3, BHLHE4! for
12p12.1 and OPF3for 142417 ¥ and, in conjunction with obesity, cho-
lesteral auxotrophy has been linked to SCARAT ar 12q24.31 {ref. 1a).
Further investigation has revealed that kidney cancer susceptibilicy
is relaved to allele-specifichinding affinitics of key renal transeription
factors {TFs) such as hypaxia-inducible Factors (HIFs) or paired box 8
{PAXE), particularly in enhancers™ ™. Here we used a multi-ancestry
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Fig. 1/ Manhattan plot For multi-ancestry GWAS of kidney cancer (29,020
casesand 535,670 contrals) using fined-effects meta-analysis model. Nominal
statistical significanceis showm s —hog, Lot two-sicded 7 statistics om the vertical
axis, The reid horizental dashed line corresponds to genome-wids significance
Ivalue threshold of 5= 107, The left insct shows a pic charefor the number

of cases across different population groups as defined by Grafl'op analysls

GWAS meta-analysis of kidney cancer te identify 63 susceptibility
regions (50 novel} containing 108 independent risk loci,

Results

Study overview

A multi-ancestry kidney cancer meta-analysis combined summary
statistics from seven published studies (six involving subjects of
European ancestry, the seventh involving African Americans), three
large biobanks (UK Biobank, FinnGen and Biobank Japan) and a newly
genotyped study (Mational Cancer Institute 3 (NC1-3)). After quality
control metrics were applied, the samples from the newly genotyped
study cohort were stratified into six subcohorts: one based onsamples
collected specifically in Brazil (1,320 cases and 1.229 controls) and
five based on genetic similarity clusters (European-like, 9,963 cases
and 67,687 controls, denoted ‘Eur’ herein based on 1000 Genomes:
African-like, 642 and 2,734, denoted ‘Afr’; East Asian-like, 98 and 490,
denoted ‘Asn’; Latin Ameérican-like 1, 144 and 211, dénoted LAL': Latin
American-like 2. 148 and 740. denoted 1AZ) from North America, South
America and Europe (Methods and Supplementary Table 1). The newly
genotyped and previously genotyped study samples were imputed to
atotal of 26,781,105 single-nucleotide polymorphisms (SNPs) across
similarity clusters (imputation quality score =0.5and minor allele fre-
quency (MAF) >0.005) using the Trans-Omics for Precision Medicine
(TOPMed) Imputation Server. Withthe addition of kidney cancer cases
and controls from large biobanks, the final kidney cancer meta-analysis
included 29,020 cases and 835,670 controls.

Multi-ancestry GWAS meta-analysis

We performed genome-wide association meta-analyses wicthin Four
populationscrata (Eur, Afr, Asnand a stratum including Brazilian, LAL
and LAZ samples, denoted ‘LA herein) for kidney cancer and the two
most common RCC subtypes, ccRCC {r =16,321) and pRCC (n = 2,193),
with adjusoment for sex and principal compenents. Multi-ancestry
meta-analyvses ofall consticuent studies were conducted using Inverse
variance-weighved fixed-effeces models, as well as random effects and
Har-Eskin random effects models™. Lintle evidence of test scatistic
inflation was observed in the multi-ancestry meta-analyses (Supple-
mentary Table 2).

The multi-ancestry fixed-effects meta-analysis of kidney cancer
confirmed the 13 previowsly reported cytoband susceptibility regions
(Supplementary Table 3) and identified 50 additional cytoband
regions associated ata level of genome-wide significance{P= 3= 10 %
Fig. 1). Performing linkage disequilibrivm (LD clumping based on

(Methods) Eur, Afr. LAand Asn. Most of the component substudics contained
samples from a single population (Supplementary Table 1), For the NCI-Yscan, a
multi-ancestry study. genetic ancestry was determined using GrafPop (Methods)
The right inset shows the quantile - quantile (QiQ) plot for the same GWAS with

the estimated genomic inflation factor.

the in-sample LD estimated from Eur participants within these 63
regions, we observed at least 108 loci independently associated with
kidney cancer (2-Mb windows with ~ < 0.2 in Supplementary Table 3
and regional plots in Supplementary Fig. 1). The significant associations
are primarily driven by signalsin Eur participants, which comprise the
majority of samples in the meta-analysis (89% overall); 18 out of the 108
loci did nothave agenome-wide significant Pvalue in analysis restricted
to Eur participants but had strong suggestive evidence of association
(maximum Pvalue of 4.1 107).

At 3p25.3, a complex pattern of the underlying genetic architec-
e across ancestries was observed in which a variant mapping tothe
¥ untranslated region (UTR)of VHL (rs7629500). and present only on
African haplotypes among Afr and LA participants (effect allele fre-
quency 10% and 2%, respectively, versus -0% in Eur and Asn partici-
pants), was strongly associated with kidney cancer (odds ratio (OR) of
L&6per effect allele; P= L6 = 107), while a second locus (rs139729777),
located 106 kb upstream of VHL, was associated with risk across anoes-
tries (OR of LOY; P=8.9x 107"

Our genome-wide analyses of X chromoseme variants, not
investigated in past kidney cancer GWAS investigations, identified
susceptibility loci at Xp22.2 and Xg25 (Supplementary Table 3).
While the genetic mechanism driving the Xq25 signal is unclear. the
Xp22 Ivariant rs6629201isanintron mapping to REPS2with a notable
cis-expression quantitative trait locus (cis-eQTL) in Genotype-Tissue
Expression Project (GTEx) kidney cortex samples. REPS2 encodes
part of a protein complex that inhibits growth factor signaling. The
risk T allele is associated with lower REPS2 expression, which is also a
predictor of poor ccROC prognosis in The Cancer Genome Atlas Kidney
Renal Clear CellCarcinoma (TCGA KIRC)™ samples (proteinatias,org)™
and has alsobeenimplicated in che progression of other malignancies
(for example, prostate, lung, esophageal and liver cancersy! =,

Conditlonal analyses were performed for the 108 individual locl
discributed across 63 cytoband regions to identify secondary inde-
pendent signals In the significant loci using In-sample LD estimaced
from Eur participants {Methods), identifying an additional two signals
at 5q24.21 and 204q13.33 that became significant afer adjusting for
the GWwaS index SNP (Supplementary Table 4). When weused random
cifects and Han-Eskin randomeffects models, genome-wide significant
associations were obhserved for S1oytoband regions (r= 79 loci) and
59 cytoband regions (99 loci), respectively (Supplementary Table 5),
Foreachofthe 108 loci associated with kidney cancer at genome-wide
significance, we conducted additional meta-analyses stratified by
sex, body mass index (BMI), smoking status, and history of diagnosed
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Table 1| Regions containing loci associated with clear cell carcinoma at genome-wide significance (P<5.0x10 % inthe
multi-ancestry GWAS meta-anslysis that were not among the regions identified in genome-wide analyses for kidney cancer

overall
Loous Location® rsiD MNearcstgene  EASNER EAF ‘coRCC: multl-ancestry coC0: population- Kidreey cancser: nrulil-
mta-analysla (16,221 casas spasific {Eun’ LAY ancasty mata-analysls
and 742,479 eontrals) 120,020 easinn el
835870 cantrola)
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e, effect cllele: e, non-effectallele; b8k offect allzle fracuency;: ¢ Fwcloz vea-sded): 2 %), heteroqeraity ssabstic fzr mzkz-analysic, Yast samples eeene excluded from Gvenss crolssas of
okl and pRUCdueta smal ramhzs of cases with knewr hissclogy. ‘Locatan extractad from quman gerome assarbly GrzHzE

hypertension (Supplementary Table &), Tests of heterogeneily across
these strata did not identify differences in effects across strata for any
leseci {108 = 4 = 432 tests: Bonferroni threshold 1.2 10 %),

Subcype analysis

In a multi-ancestry meta-analysis of ccRCC (16,321 confirmed cases
and 743479 controls), genome-wide significant associations were
observed in 52 regions, whichincluded 78 loci (3upplemencary Table 7],
Since the majority of kidney cancer casesare ccRCC, itis not surprising
that 46 ofthe &3 regions associated with kidney cancer also achieved
gename-wide signiflcance forecRCC In the subset wich confirmed sub-
typee pathology, while the 17 remaining kidney cancer regions were a5so-
ciated with ccRCC below this significance threshold (Supplemencary
Tahle8). Conversely, the analysis of ceRCC also identificd seven addi-
tional susceptibility regions (1p36.33, 19213, 7921.2, 9931.3, 10q22.1,
11p11,2and 2241331} that had not achicved genome-wide significance in
analyses of overall kidney cancer (Table 1 and Supplementary Table 7).
Motahly, in @ meta-analysis of the less-common pRCC subtype (2,193
cases and 740,516 controls), we report, to our knowledge, the first
genome-wide significant associations to be identified for this subcype,
in six regions (seven independent loci; Table 2), one of which is shared
with ccRCC and kidney cancer {7q32.1, mapping to /RFSh

In tests for heterogeneity in effect sizes between ccRCC and
PRCC subtypees for the 10 kidney cancer loci, we observed slgniflcant
subrype differences For 7 lect in seven regions (Lg22, 1932.1, 3p25.3,
11g13.3, 14924 2, 14032 33 and 19p13.3; 108 tests, Bonferroni-corrected
threshold of 4.6 = 1074, all of which involved stronper effect sizes for
ceRCC {Supplementary Table 8). Notable among these findings was
the VHL 3 UTR variant rs 7629500, which demonstrated a particularly
strong association with coRCC (0R 2,72, 95% confidence interval (C1)
223 3.30; 7= 1.3 =107 Fig. 2a ¢} and a null finding for pRCC {0/
0.9, 95% CI 0,70 1.33; P - (.82), Similarly, the nearby 3p25.3 locus
rsl 39729777 demonstrated an effect specific to ccRCC (Supplemen-
tary Table 8). In analyses of cases subgrouped by age at diagnosis, we
observed stronger effect sizes with earlier-onset kidney cancer for a
fewlocl (Forexample, at 2p21, 3q11.2 and 4425}, although tescs of het-
erogeneity were nol significant at the Bonferroni-corrected threshald
(Supplementary Table 8).

The overall genctic correlation between ceRCC and pROC was
estimated ta be (.51 {Methods), indicating that the subtypes have sub-
stantial overlapinthe underlying peneticarchivecture of suscepribilicy.
Asnoted earlier, one particular locusat 7q32. 1 achieved genome-wide
significance for both subtypes (index variants; rs3807306 and
rs3778754 forecRCC and pRCC, respectively; Fig, 3a—c), The consensus
credible sets for ccRCC (8 variants) and pRCC (11 variants) atthis locus
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overlapped substantially (7 variants: 3775754, ra3807307, re3523536,
rs377R7SE, rs37TETS2, rs377E7S1 and rs37373587), indicating that the
association results forthe subtypes are driven by one ormore common
causal variants, This overlap was further confirmed using colocaliza-
tion {probabilicy of a shared cawsal variant across ccRCC and pROC
is B58.3%). We also found that the locus overlapped with potentially
activeenhancers (12K27ac peaks)across both subtypes {Supplemen-
tary Table ?) and harbored significant cis-eQTLs for the expression of
RIS in both TCGA-KIRC {ccRCC) and TCGA pRCC (TCGA-KIRF, for
pRCC) as well as GTEx whole blood (Fig. 3d-Fand Supplementary
Table 10). IRF5 is a TF implicated in various auto-immune diseases
including rheumatoid arthritis, inflammatory bowel disease and
systemic lupus erythematosus, and has been reported to influence
developmentof cancersof the stomach, breast and thyroid™ . Nota-
bly, hyperactivation of IRFS in systemic lupus erythematosus has
been shown to contribute to lupus nephritis severity and impair
kidney function'. This suggests the potential function of this locus
might be related to immune function, perhaps commaon to both
subtypes, In fact, several variants present in the credible sets for
both subtypes disrupted the TF-binding motifs for genes, including
NFKB2 and RUNKZ (Fig. 3g.h), which have been implicaced both in
immune response and in different cancers.

Pleiotropy of kidney cancerloci

A search of the GWAS catalog For cancer pleiotrople effects for the
identified kidney cancer loci and other correlated SNPs (Methods)
vielded 20 cytoband repions (26 loci) with genomewide sipnificant
associations for a total of 16 cancers (Extended Data Fig. Tand Supple
mentary Table 11, Some of the shared loci map to regions with genes
associated with multiple cancer types, thus raising the possibility of
shared pathways in carcinogenesis, For instance, kidney cancer sus-
ceptibility loci at three of the six known Ioci within the TERT-CLPTMI

region on 5ply.33 (rs7734992, rs2853677 and rs33957 166) are shared
with ten other cancers (bladder, breast, colon/rectum, brain, lung,
melanema, non-melanoma cancers (NMSC), ovaries, prostate and
tescis). Kidney cancer also shares three independent loci at 11223
within the large ATM gene, important in susceptibllity to cancers of
the breast, melanoma and proscace, as wellas rare myeloproliferative
neoplasms. Our findings alsao highlight the 1042433 repion, which
harhbors the QBFCT gene associated with cancers of the breast, lung,
ovaries, thyroid, melanoma and NMSC, Furthermore, the locus marked
by rs78375222 on 17p13.] maps to the 3 end of TP33, which is also a locus
For seven other cancers {breast, glioma, chronic lymphocytic leu kemia,
lung, melanoma, NMSC and prostate). [n a separate search for pleio-
rropy with major kidney cancer risk factors within the GWAS catalog
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Table 2| Summary of pRCC susceptibility loci in multi-ancestry GWAS meta-analysis at genome-wide significance
{P<5,0x107), Associations with ccRCC and overall kidney cancer for these variants are also shown

LoawUg Locathor” rall EETLE ERf EAF pRCC ceROC Kbirey cancar
gene NEA (2,193 cases and {18.3H casos and (29,020 cases and
740,516 contrals) T43.479 controls) 835870 controls)
OR[85% Cl) P Fi%) OoR P OR P
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In323 204IAGGIS rsd54R604 RLEKRAGR  TC 05E CORE (0T D) B7x10" Q.0 a.a7 D035 a5 SO0
AqALI1T 14337817 r&132E196 LEPIE G 035 079(074-084] 2.50°Y 215 o=l:} 024 o.q7 OOCOET
fga2 EAEASAE [EERE=TEr IRFS G 044 QBZ(0 =080 BEa” k] 04 g1 o Th=10"
TEIANF AES4RELT rITIETRAD KCNHT TG noz 176 (1.44-2.15) AA=IDE 761 101 AT 104 kel
TFam.2 IPELIEID re7II3E2A5  KCWNE Te 00s 1.57 (1.34-1.583) 122908 12.6 10 o7 107 a.023
Ngal 1EIBOE1E re40a Lghag AT 033 1249 (1.1-1.58) R Rl a7y 105 QoS 105 11107

e, effect allele; hza, noncffzct allels; BAF, offect allzle frozuency: #, Pecluz fva sded). “Losation extracted fram human genemz assembly BrioHan,

and among publicly avallable sumimary statlstics from geneme-wide
analyses af UK Biohank phenotypes {(Methads), we identified regions
associaced wich hypertension and/or bleod pressure (= 10), BMI (= §)
andsmoking (n=3; Extended Data Fig. Tand Supplementary Table12).

Fine-mapping and eQTL analysis

Fine-mapping of the kidney cancer susceptibility regions was per-
formed to identify candidate causal variants in the independent loci
significantly associated with kidney cancer, as well as in ccRCC and
pROC subrypes. For kidney cancer, acredible set of consensus between
TheSUm ofSIingle Effects (SuSIEY* and Probabilistic Annocacien INte-
graTOR (PAINTOR)* packages (Methods) was generaced and encom-
passed 1321 unique variants (maximum Pvalue of 5.3 = 107, with a
median of 12 variants per credible set (Supplementary Table 13): chis
set encompasses the high-interest variants identified by at lcast onc
of the programs. A substantial proportion (25.9%) of the credible sets
contained five or fewer variants. Analysis in ccRCC and pROC produced
consensus credible sets encompassing 1L,O9E (median of 15) and 58
(median of 4) variants, respectively.

Analyses of kidney cancer risk variants using existing transcrip-
tomics datasets revealed significant (false discovery rate (FDR) <5%)
cis-eQTL effects on several genes within a =500 kb window. Cverall,
among the significant loci, 48 varlants from 34 cytoband reglons dis-
played cis-eQTL for 83 genes across normal and tumor transcriptomes.
Specifically, out of 108 sentinel kidney cancer variants, weidentified 3
and40 that displayed significant cls-eQTL effects on 3 and 70 genes In
normal kidney cartex (& = 73) and whale blood (8 = 6700, respectively,
from GTExvE. The cls-eTL effects of the associated risk variants were
further pursued in TCGA-KIRC, and 17 variants having significant (FDR
<54} cis-eQTL effects on 20 genes were identified (Supplementary
Tahli 10}, & broader ana lysis using the 1,321 variants identified across
credible sets from fine-mapping analysis revealed signiticant cis-eQTL
effects on an additional 1 {total, 5 and 26 {cocal, 260 genes in kidney
cortex and whole blood, respectively, Similar analysis in ccRCC and
pRCC vielded 65 and 6 genes wich significanc cis-eQTL effects from 36
and 4 variants, respectively.

Functional enrlchment

Previous work has focused onthe roleof HiFs inkidney carcinogenasis,
including evidence that kidney cancer susceptibility lociarcenriched
for HIF-binding sites. We sought to investigate potential excess overlap
amaong the HIF-binding sites as defined by chromatin immunopre:
cipitation sequencing (ChIP-seq) profiling of HIF-la, HIF-2a and HIF-1[}
hinding sites in 5 RCC4 and 786-0 RCC cell lines with the 108 identi-
fied kidney cancer risk loci {Supplementary Table 14}, Using a strin-
gent definition of overlap, we found 11 kidney cancer risk variants {or
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varlants in high LD} reslding in HIF-binding sices defined by at least two
ofthe five ChiP-seq profiles and a resampling/boostrapping approach
determined the overlap was higher than expecred (=15 = 1071, The
search was extended for 225 kb from the HIF-hinding peak identificd
by ChiP-sec, and a further six loci were detected overlapping with these
seguences and demonstrating s similar enrichment (P=1.1= 10 7).

Insilico analysis using GWAS Analysis of Regulatory or Functional
Information Enrichment with LD correction (GARFIELD) © showed that
risk variants associated with kidney cancer were significantly enriched
for putative regulatory annotations in several tissues and cell lines,
including active promoter/enhancer regions and DMasel hypersensitive
hotspots{Extended Data Fig. 2 and Supplementary Table 15). To further
characterize the functional underpinnings of the kidney cancer associ-
ated boci, we investigated the distribution of putative TF-binding sites
using motif data and position weight matrices from publicly available
databases™. Forvariants identified within the consensus credible sets,
we identified 34.8% of the variants as mapping to known TF-binding
sites. It has been previously established that kidney cancer suscep-
tibility variants are enriched for allelic alterations in several known
TF-binding motifs. Among such known TFs, we identified 12 variants
across 8 loci mapping to PAXSbinding sites, 28 variants across 19 loci
mapping to FOS and 39 variants spanning 22 loci mapping to JUND
binding motifs. Using a bootstrap approach, as above, we found that
such overlaps were significant (P= 0.008, 0.007 and 0.001 for PAXS,
FOS and JUND, respectively).

Recently, Nassar et al.” conducted an epigenomic charting of the
subtypesofl RCC using assay for transposase-accessible chromatin with
sequencing profiling”. Among the 78 loci (index variant and SNPs in
high LD, /> (L8] identified for coRCC, we found 19 loci averlapped with
potential active promaoters (H3K27ac peaks) of at least two of the coRCC
samples reported by Nassaretal.” (Supplementary Table 9). For pRCC,
an overlap of four loci out of seven was identified. Both findings were
determined tobe significant(P=23=10"and 4.4 xlﬂ"‘,mpccr_i\-'cly]
usingthe previous resampling approach (Methods). Further, 16 of the
19 ecRCC loci that overlapped with H3K27ac peaks in ccRCC samples
also overlapped with H3K 27 ac peaksin pROC samples. Similarly, three
of the seven pRCC loci that overlapped with H3K27ac peaks in pRCC
samples were also observed under H3K27a¢ peaks in ccRCC samples,
suggesting genetic similarities between subtypes for select loci.

Heritability

Using individual-level data from Eur participants in NC1-1, NCI-2 and
NCI-3scans (13,692 kidney cancer cases), we estimated the liability-scale
heritability of kidney cancer atrributable to common variation to be
16.4%(95% C112.9-19.9%), which is approximately 42% of the total herit-
ability of kidney cancer as estimated From twin studies (38%) . Larger
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Fusilion an wriromosorne 3
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GWAS should continue to move us closer to s comprehensive map of the
underlyinggenetic architecture of common variants for kidney cancer
risk.Previousestimates of the heritability of kidney cancer suggest that
maore than 80% of the heritability of this cancer canbe explained using
thecommon variancs alone in higher powered larger GWAS including
up to 200,000 cases and an equal number of controls™?,

Polygenic prediction of kidney cancer risk

‘Tofurtherirvestigate che underlying architecture of kidney cancer sus-
ceptibllicy, we construcred a kidney cancer poelygenic risk score (PRS)
using the effect size estimates from the multi-ancestry meta-analysis
(excluding UK Biobank) for 107 of the 108 kidney cancer loci (the VHL
lereus 7629500, found only among Afrand LA participants, was nat
included}. Inavalidation set of unrelated Fur UK Riohank participants
(Lo%6 cases and 323,109 controlsy, a one standard deviation increase
in the PR5 was associated with increased risk for kidney cancer (OR of
150, 95% CI1.43~1.58), with the association furcher strengchening when
restricting to ccRCC asthe outcome (ORof 169, 95% C11.57-LE1), Fur-
ther comparison of PRS declles (Supplementary Table 16) demonstraces
theutilicy of risk stratification of the PRS, especially when comparing
thelowestand highest deciles (OR of .24, 955 C1 3.30-5.51For kidney
cancer: OR of 6940, 95% C14.59-10L86 for ecREC). We evaluated the
improvementin discriminative performance of this PRS in the valida-
tion set compared with a bascline model including sex. As shown in
Fig. 4 and Supplementary Table 16, the PRS improved the predictive
performance of the baseline model increasing the estimated arcaunder
thecurveAUC) rom 0.81195% C10,59 0,62 e 0.65{95% CI0L64 0.67)
When we expandad the baseling model to include additional visk factors
(age, smoking, EMIand hypertension), the addition ofthe PRS boosted
the AUC from 0.71{95% C1 0,70 0.72) to 0L A (95% C10.72 - 0,75), The

PRS also demonstrated better performance far predicting coRCC cases
in UK Biohank;ics addition tothe base model improved the AUC from
.61 (5% C10.59 0.63) to 068 {95% C1 0,66 0.70), and its inclusion
inthe base plus risk factors model boosted the AUC from 0,70 (95% C1
el 0.72) to 074 (95% C10.72- 0.78).

Discussion
This multi-ancestry GWAS meca-analysis of 29,020 kidney cancer cases
and 835,670 controls expands the number of identified suscepilility
reglons from 13 to &3 and further advances knowledge of the genetle
architecture ofkidney cancer by identilying promising candidate func-
tional variants lecalizing to e TLs {for example, fRES) and THbinding
sites (for example, HIF). In particular, our molti-ancestral approach
identified associations inthe VAT locusthat highlight localdifferences
indisease architecture due to population-specific allele freguencies.
Cur meta-analysis discovered a ccRCC germline susceptibility
locwus with an unusually scrong effect size that was common in some
populations (for example, Afr participants) at the 3p25.3 locus tagged
b re7629500, Wealso observed a weaker nearby risk locus tageed by
rsl 39720777 shared across populations, The rs7e28500 variant maps oo
the 3 UTR of FHE and the rs1397 29777 varlant is approximately 100 kb
telomeric of VHE (and an intren of FANCDZ). VHL Is a critlcal gene In
the pathogenesis of ccRCC and mutations (and 3p deletion) are com-
mon inceRCC tumors and the cause ofvon Hippel-Lindao syndrome,
an inherited disorder characterized by a markedly elevated risk of
ccRCC. VHL inactivationisa critical earlyeventin ccRCC development,
inducing constitutive upregulation of HIF-mediated expression of
oncogenic factors®, and as such, these variants could promote VHL
dysregulation. The paucity of Afr and LA samples in GTEX and TCGA
datalimits immediate investigations into functional effects, altheugh
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(Methods). Violin plots represent the distribution of gene expression between
the10th and 90th percentiles, with the medianmarked in white, across possible
genotypes. g h, Variants present in the fine-mapping credible sets (Methods) for
ocRCC and pROC disrupt the binding of immune-related and cancer-related TFs,
such as rs 3757 357 for NFKE2 () and rs 3523536 for RUNXC2 (h), respectively.

3 UTR variants have been shown to affect multiple post-transcriptional
and translational processes ™.

The analysis of known ccRCC cases confirmed those for kKidney
cancer overall and identified a handful of novel loci, which is not sur-
prising given that the majoricy of kidney cancers are this subtype. Some
of the identified kidney cancer and ecRCC loci are located within or
nearby genes involved in well-established pathways contributing to
ccRCC pathogenesis (VHL, AKTI and GREIQ), as well as genes more
broadly recognized as tumor suppressors (FANCDZ and TP53) and
oncogenes (MLTTT0 and CDK6), while other novel loci are situated
near genes involved in hypoxia response (DDIT4), cell cycele control
(COKNIA, COKN2C, CNEPIRL, INCENP, NCAPH2, 5TNI and TFDP2),
telomerase regulation (POTT and TERT) and insulin signaling (INSK).
Follow-up functional investigations of these identified kidney cancer
and ceRCC loci are warranted toidentify the causal variants toelucidate
the underlying biology.

Our multi-ancestry GWAS s, tothe bestof our knowledge, the first
o report susceptibility loci for pRCC, identifying seven loci mapping
Lo $ix regions, the majority of which are not associated with overall
kidney cancer or ccRCC. As we described earlier, the 7g32.1 locus was
significant inkidney cancer overall and in both subtypes, with several
lines of evidence pointing to JRFS-related effects underlying thisasso-
ciation. We also identified eQTLs localizing to other pROC loci, offer-
ing new clues for the biclogical underpinning of pRCC susceptibility
loci. For example, the rsl396196 locus at 4931.21 is located near two

plausible candidate genes. It lies 90 kb downstream of and is a GTEX
whole blood cis-eQTL for USP38, which encodes a deubiguinase that
promotes non-homologous end-joining repair by regulating the activ-
ity of HDAC1 (ref. 43). The locus is also 61 kb upstream of GABI which
encodes an adapter protein that binds directly with activated MET to
mediate numerous oncogenic signals via the ERK and AKT/PKB path-
ways, including cell proliferation, survival and invasion. The proximity
of this locus to GABT is notable given that MET is a well-established
pRCC proto-oncogene; autosomal dominant mutations in MET
are responsible for hereditary papillary renal carcinoma’ and MET
alterations or chromosome 7 gain are found in the majority of
sporadic type 1 pRCC wmors ™. Expanded GWAS of pRCC in different
populations could offer further insights into pRCC etiology, such as
germline connections to MET, and could be informative in elucidat-
ing the basis for the approximate threefold excess of pRCC in the US
Black population®.

The increasing incidence of kidney cancer, frequent lack of symp-
toms at diagnosis (even at advanced stages) and wide variation in
survival between early and advanced-stage disease support the impor-
tance of developing effective screening approaches™. In this regard,
the kidney cancer PRS constructed from identified kidney cancer loci
demonstrated good discriminatory performance in our validation
dataset; its inclusion in a risk prediction moedel including major risk
Factors resulted in an AUC of 0.74 (versus 0.71 with risk Factors only).
Theimpactof this PRS was slightly greater when the model was ussed to
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overall kidney cancer. Two baseline models are considered for benchmarking,
containing differing sets of predictors (Methods). Baseline 1 includes sexand
genetic principal components, and baseline 2 includes sge, sex, genetic principal
companents, body mass index, smoking status and hypertension. For full results,
see Supplementary Table 16.

predictccRCC (AUC 0,78 with PRS, 0.70without), further underscoring
the importance of this histologic subtype as a driver of the observed
GWAS signals for kidney cancer overall. While the comparative raricy
of kidney cancer in the general population is a barrier to broad-based
screening, atargeted risk-stratified approach could be cost-effective,
Inthis regard, and given the strength of its AUC, our PRS merits further
investigation in well-defined dlinical and preventive studies. However,
asthe PRSvalidation was limited to Eur participants in the UK Biobank,
the generalizabilicy of these findings to other populations should be
the focus of ongoing investigation,

As morekidney cancer genetic susceptibility regions remain to be
discovered with ever larger GWAS that expand into more diverse popu-
lations, the underlying genetic architecture will come into better focus,
a key step towards clinical use of both rare variants and more precise
PRS instruments. Deeper investigation ofkidney cancer susceptibilicy
regions promises to reveal dues into the etiology of kidney cancer and
perhaps elucidate novel strategies for detection or treatment. Our
study demonstrates genetic factors common to different histologic
subtypes and at the same time, defines subtype-specific variants, which
in turn could lead to new avenues for research.

Online content
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Methods

Informed consent and study approval

The NCI-3scan and meta-analysis were classified as exempt from ethics
review by the National Institutes of Health Office of Human Subjects
Research Protection (18-NCI-00636-2), given the absence of personally
identifiable informaticn. Each participating center and study obtained
written informed consent from the study participants and approval
from its institutional review board (Supplementary Table 17).

Genotype quality control and imputation

NCI-3 scan. Samples obtained from collaborating centers in North
America, South America and Europe (Supplementary Table 18) were
genotyped by the NClusing the lllumina Global Screening Array with
Multiple Disease content v2. We intersected and merged the newly
generated genotype data with Global Screening Array with Multiple
Disease content (vl) data from the Prostate, Lung, Colorectal and
OwvarianCancer Screening Trial and Cancer Prevention Study Il cohorts
into a single file. For our sample gquality control (QC), 512 replicate
samples were removed, and 161 discordant genetic sex samples were
removed. We checked For samples with a low call rate (<95%) or con-
tamination, and none was found. Samples specifically collected in
Brazil were set aside to form a Brazil-based cohort (consisting mostly
of admixed American ancestry samples). GrafPop v1.0% was then
used vo classify the remaining samples by genetic similarity into the
following groups: Eur, Afr, LAL, LA2 and Asn. GrafPop v1.0 groups
study subjects into these classes based on their similarity to five large
reference samples drawn from the National Institutes of Health data-
base of Genotypes and Phenotypes (dbGarP*), defined using study
reported populationterms: (1) ‘White, Caucasian, European, European
American, and other equivalent terms’, (2) ‘Black, African, African
American, Ghana, Yoruba, etc., (3) Asian, East Asian, Chinese, Japanese,
ete), (4) ‘Asian Indian, Pakistani’, and (5) ‘Mexican, Latino. The LA1
cluster has greater similarity to the African reference (dbGaP sample
2) thanLA2, A fraction of the cohort (753 samples) that did not classify
into one of these ancestries was excluded from further analysis. A total
of 97 samples with excess homozygosity (F; =0.1) or heterozygosity
{Fi; =—0.1) calculated within ancestry, were removed. We further
applied 1:5 case—control matching using PCAmatchR* v0.3.3 in the
Asnand LA2 subsets only due to a high degree of population structure
in our data for those ancestries.

Wethen performed marker QC separately within each group. We
removed genotyped markers failing Hardy-Weinberg equilibrium
(HWE) in controls (P < 1= 107 in the large Eur sample: P< 1% 107 other-
wise: Eur: 4,310, Afr: 1,545 Asn: 1,912, LAL: 49, LA2: 385 and Brazil: 1,050
markers), differential case-control missingness (F=1=10™ in Eur;
P<=1=107" otherwise; Eur: 32,941, Afr: 3,299, Asn: 260, LAL: 4, LAZ: 56
and Brazil: 3), or with a large deviation from the Genome Aggregation
Database v3.1.2 population-specific reference frequency in controls™
{20%and greater; Eur: 1,822, Afr: 1,988, Asn: 2,011, LA1: 2,288, L A2: 1,921
and Brazil: 1,976), along with monomorphic markers (Eur: 64,215, Affr;
61,176, Asn: 52,964, LAL: 86,956, LAZ: 79976 and Brazil: 46,785). Markers
with a low call rate (<90%) after subcohort stratification were also
excluded (Eur: 0, Afr: 13, Asn: 32, LAL: 1, LA2: 15 and Brazil: 0).

Post-0C genotype sets from each ancestry were imputed using the
TOPMed Imputation Server {reference panel version R2), Finally,
post-imputation QC assessment led us to additionally filver 474 geno-
typed markersin the Eur samples where imputation of the masked gen-
oty pe was poorly correlated with the actual genotype (leave-one-out
R-sguared-empirical R-squared =0.5), suggestive of genolyping errors,

Previously reported scans. One previously reported scan (Interna-
tional Agency for Research on Cancer (IARC); combines data from
wo JARC GWAS (JARC-1 and 1ARC-2))" did not have individual-level
data readily available, so summary data were used. For the others
with individual-level data (NCI-1, NCI-2, MD Anderson (MDA),

MDA-OncoArray, and UK and US Kidney Cancer Study—African
Americans) ™™, we performed fresh rounds of genotype OC andimpu-
tation. No changes were made to the sample composition of the scans,
with one exception: for the MDA-OncoArray scan, we used KING™ to
find and remove unexpected genetic duplicates across this and other
genotyped MDA samples in the MDA GWAS and NCI-3 scan, and then
used GrafPop v1.0 to classify MDA-OncoArray samples by genetic
similarity; any samples that were not classified as Eur were excluded
from further analysis due to small numbers. For all previously reported
scans with individual-level data, genotyped markers with departures
from HWE in controls (P <1 =107, differential case—control missing-
ness (P<1% 107%) orlarge deviations from population-specific Genome
Aggregation Database v3.1.2 (ref, 59) reference frequency in controls
{allele count Fisher's test P< 1% 107 were removed. SNPs with low
call rate (<95%), monomorphic SNPs, and ambiguous SNPs were also
excluded. Remaining genoty pes were imputed to the TOPMed panel™
containing 97,256 samples and 308,107,085 variants using the TOPMed
Imputation Server R2 (ref, 52).

UK Biobank. A detailed description of the design of the UK Biobank
has been previously reported™. Briefly, 503,317 individuals visited
an assessment center between 2006 and 2010 to complete a ques-
tiennaire collecting information on demographic, lifestyle and other
health-related factors and provide biological samples and physical
measures, Genotyping of DNA extracted from blood specimens was
performed by Affymetrix (now part of Thermo Fisher Scientific)
using either the UK BIiLEVE Axiom (N =49,950) or UK Bicbank Axiom
(N =438 437) array. The released genotyping dataset, after application
of gquality control filtering, included 488,377 samples with 805,426
markers from both arrays. Genotype imputation (N =97,059,328
variants) was performed using data from the Haplotype Reference
Consortium and UK10K haplotype resource, We used GrafPop v1.0
to classify participants by genetic similarity; Eur participants were
included in the analysis. This research has been conducted using the
UK Biobank Resource under Application Number 86140,

FinnGen. FinnGen is a nationwide research project launched in
2017, combining genomic data and electronic health registers of
hundreds of thousands of Finns to provide novel insights into the
mechanism ofhumandiseases®, Samples were genotyped with Thermo
Fisher, llumina and Affymetrix arrays and imputed with a Finnish
population-specific reference panel (hitps:/sisuproject.fi/).

Biobank Japan. The Biobank Japan Project (BB]) is a national initia-
tive that aims to create a biobank of genetic and clinical data from
around 200,000 individuals with 47 target diseases, collected through
anationwide hospital-based genome cohort since 2003, Genotyping
ofthe collected DNA sampleswas conducted using either the lllumina
HumanOmniExpressExome Bead Chip or acombination of the llumina
HumanOmniExpress and HumanExome BeadChips™, Imputation
of the genotypes was performed using a reference panel developed
from 3,256 high-depth whole-genome sequences from the Japanese
population combined with data from the 1000 Genomes Project™ after
standard quality control of array data.

Statistical analyses

PCA. Principal component analysis (PCA)was performed withineach
cohort for assessment of population substructure and for covariate
adjustment in GWAS. Autosomal genotypes passing OC were LD pruned
using PLINK L9 (ref. 66) ('—indep-pairwise 5010 0.1, excluding the
major histocompatibility complex region. KING™ v2.3was used tocon-
struct amaximal unrelated set of samples with less than two degrees of
relatedness. PCA was then performed on the unrelated set using PLINK
v2.0(ref. 67), and the full setincluding related samples were projected
onto the eigenvectors.
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GWAS. GWAS analyses of all scans except FinnGen and IARC (which
was previously analyzed)” were performed in SAIGE™ v1LL6.2, Foreach
GWAS, a full genetic relatedness matrix was constructed on the basis
of the same LD-pruned set of cohort-specific SNPs used in the PCA.L
Additionally, weenabled leave-one-chromosome-out model fitting and
approximate Firtheffect size estimation was used for SNPswith P< 0,05,
Sex and ancestry-specific principal components (PCs) were adjusted
for in all scans, except for the UK scan, which had PCs only. A total of
20 PCs were used in the NCI-3 Eur GWAS due to observable structure
in higher PCs; 10 PCs were used otherwise. For BB, PCA identified PC1,
PC2and PC5 assignificantly associated with case—control statws, after
adjusting for sex; these PCs were included together with sex as model
covariates for GWAS analysis conducted using SAIGE. For FinnGen,
GWAS was performed using REGENIE, with sex, age (at genotyping),
age squared, genotyping batch and the first ten PCs as covariates,
GWAS analyses were also conducted for ecRCC and pROC, as well as for
kidney cancers categorized by age at diagnosis (<60 versus =60 years
and <30 versus =65 years). We employed case-case comparisons Lo test
for heterogeneity in SNP effects between the two histologic subtypes
and the earlier- and later-onset cases™. In addition, we conducted GWAS
analyses of Kidney cancer separately for men and women, and analyses
ofidentified kidney cancer loci stratified by BMI, smoking and hyper-
tension. All statistical tests were two-sided. We performed a check for
duplicates and relatives across studies for which individ ual-level data
were available at NCl {all studies except for IARC, FinnGen and BE]). In
analyses of 458,752 samples, we identified 328 duplicates (0.07%), 466
first-degree relatives (0.10%) and 522 second-degree relatives (0.12%).
As these samples represent an extremely small proportion of total
samples, we did not re-analyze the data with them removed.

GWAS meta-analyses. We performed population-specific (Eur, Afr,
Asnand afourthstratumincluding Brazilian, LAland LA2 participants,
denoted "LA") and multi-ancestry GWAS meta-analyses for overall
kidney cancer and the two major subtypes (ccRCC and pRCC). GWAS
summary statistics wereimported into the GWAS variant call format™
v.1.2 format using the beftools " +munge plugin vl 16 (ref. 72). Where
mecessary, summary statistics were lifted over to genome build GRCh38
using the beftools Hiftover plugin (ibid.). Inverse variance-weighted
fixed-effects meta-analyses were then performed using the beftools +
metal plugin (ibid.), a reimplementation of METAL™ for GWAS vari-
ant call format. For multi-ancestry GWAS, we additionally performed
random effects and Han—Eskin random effects™ meta-analyses in
METASOFT v2.0.1.

Clumping. We performed LD clumping in PLINK vL9 (ref. 66) toidentify
independent loci at genome-wide significant regions. For clumping,
we retained the variants thathad at least 1% MAF in any one of the 1000
Genomes Project populations. Since the majority (-85%) of the dataset
are Eur, we performed clumping with LD extracted from the Eurindividu-
alsin the sample having genotype-level data, Thisincluded 93,595indi-
viduals fromNCE-1, NCI-2, NCI-3 Eur, MDA and MDA-OncoArray cohorts,
Weusedanr < 0.2 threshold and a2 Mbwindow, meaning that any two
genome-wide significant SNPs having = 0.2 (as calculated from the
in-sample LD among Eur participants in the study) and physically within
2 Mb of each other will be considered as belonging to the same locus,
with the SNFP with the lower Pvalue being retained as the index SNP.
Fortheidentified LD-clumped loci, we reviewed post-imputation
QC statistics (Supplementary Table 19) from controls of studies that
were imputed using the TOPMed Imputation Server (all but IARC,
FinnGen, UK Biobank and BE]). One marker (rs1778%9633) in one
genotype set (NCI-3 Eur) showed significant deviation from HWE
(P= 3.0 x 107). However, the difference in observed and expected per-
centage heterozygosity is small (0.494% versus 0.479%). Moreover, we
observed noevidence ofinter-study heterogeneity in our meta-analysis
of this variant across Eur study samples (' =0, with associations

atP<0.05in three other studies (IARC, MD and MDA-OncoArray; Sup-
plementary Table19). As a consequence, we retained the NCI-3 Eurdata
for this locus in our analysis.

Conditional analysis. We further performed conditional analysis
on each of the LD-clumped loci to detect any additional SNPs within
the region of 1 Mb upstream and downstream of the index variant for
each of the initially identified LD-clumped locus. In-sample LD was
extracted from the Eur participants in the study as deseribed above,
The analysis was performed using the standard parameter settings
in the GCTA-COI0 module v0.94.1 (ref. 74). using a forward stepwise
selection approach, starting with the index SNP ineach locus.

Allelic - We searched for evidence of allelic pleiotropy using
two data sources. First, we used LDTrait” v5.6.4 to search the GWAS
catalog (www.ebi.ac.uk; dataas of 23 June 2023) for previously reported
genome-wide significant associations with other cancers or kidney
cancer risk factors (BMIobesity, hy pertension and smoking) for the
identified kidney cancer loci and other correlated SNPs(F = 0.4 in the
1000 Genomes EUR panel) within £1 Mb using GRCh38. Database search
terms are listed in the footnote of Supplementary Table 11. Second,
we used the online database Open Targets Genetics (huips://genetics.
opentargets.org/: data as of 23 June 2023) to search UK Biobank GWAS
summary statistics for associations between the Kidney cancer loci
and the aforementioned risk factors, using a Bonferroni-corrected
significance threshold of 2.3 » 107 accounting for 108 loci and 20 search
terms (see footnote of Supplementary Table12).

Fine-mapping. We performed fine-mapping of kidney cancerin each
ofthe lociidentified through LD clumping. For each locus, we retained
variants in the 1000 Genomes reference panel of MAF =25% within a
region1Mb upstream and downstream of the sentinel (index) variant.
Since the majority ofindividuals in our GWAS are from the Eur stratum,
we extracted in-sample LD from the individuals for whomvariant-level
data were available. An exception is the locus on 3p25.3, indexed by the
variant rs7629500; for this locus, we extracted in-sample LD From Afr
participants (n=4.,006).

Subsequently, using the GWAS summary statistics and the
extracted LD estimates, fine-mapping was performed by owo differ-
ent methods: SuSik and PAINTOR v3 (refs. 33,34). SuSiE performs a
Bayesian stepwise regression to identify for each loeus the optimal
number of causal signals (we specified a maximum of ten) and a 95%
credible set corresponding to each causal signal. We used PAINTOR
v3 o determine the posterior inclusion probabilicy for each SNP for
a given number of causal signals (maximum of three). The credible
sets were obtained for each locus in the PAINTOR analysis, meaning
the minimal set of variants that encompasses a pre-specified (95%)
posterior probability. For each locus, the union of the unigue SNPsin
the credible setsidentified by SuSiE and PAINTOR were considered for
further testing as ‘consensus’ credible sets.

aQTL eQTL analysis was performed for the associated loci identified
through the GWAS by systematically guerying different transcriptomic
databases. This analysis was initially performed using the index SNPsof
the loci associated with kidney cancer overall, ccRCC and pRCC, and then
again repeated with the variants identiflied in the consensus credible
sets (see above) for each of the susceptibility loci. We cataloged the
genes that had atleast one significant cis-QTL (FDR <5%) in the queried
set o SNPs using transcriptomic data from the following tissues in GTEx
vA(ref. 21) and TCGA™: GTEX kidney cortex (v =73), GTEx whole blood
(& =670), TCGA-KIRC (N =527) and TCGA-KIRP (N =290).

Colocalization. Colocalization analysis was performed to seewhether
the signal at 7g32.1 for ceRCC and pRCC were driven by the same causal
variant(s) using the coloc v5.2.3 R package.
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Functional annotations. We evaluated the enrichment of SNPs sig-
nificantly associated with kidney cancer and its subtypes (ccRCC and
pRCC) in relation to several functional features as annotated in the
Encyclopedia of DNA Elements * and Roadmap Epigenomics projects.
Analysis of functional enrichment was performed using GARFIELD “v2
with default parameter settings.

Enrichment of HIF-binding sites. Excess overlap was investigated
between significant SNPs and HIF-binding sites in specific RCC cell
lines. First, we identified all SNPsinstroag LD {F = 0.8) with the index
SNPat each LD-clumped locus using LD extracted fromindividual-level
Eur data. we determined HIF-1a, HIF-2a and HIF-1B-binding sites using
publicly available ChiP-seq datain RCC4 and 786-0RCC cell lines from
ref. 18. We defined overlap as a locus coinciding with peaks in two
or more of the five ChiP-seq datasers of HIF-binding sites. We then
performed a bootstrapping analysis by randomly shuffling the GWAS
significant loci 500,000 times across the genome and atleast 5 Mb away
from the eriginally identified loci, evaluating statistical significance
against the null hypothesis that the susceptibility loci are notenriched
for HIF-binding sites. We further extended our search for overlapping
locito 25 kb around the ChiP-seq peaks and calculated the Pvalue for
the observed overlap similarly as before.

Identifying TF-binding metifs. To identify potential TF-binding
sites for a given set of SNPs, motifl analysis was performed using the
motifbreakR™ v2.14.2 package, which includes the HOCOMOCO = v11
positional weight matrices database, with default parameters (down-
loaded on 5 May 2023). We evaluated the enrichment of binding sites
for several a priori selected TFs, by repeating the experiment 1,000
times with randomly selected SNPs having P value >0.01 and at least
1 Mb away from each of the SNPs in the initial analysis, allowing us to
calculate the Pvalue for overrepresentationof specific TF-binding sites.

Enrichment of RCC-related epigenomic annotations. We used data
froma previous detailed epigenomic profiling of the major subtypes
of RCC (ecRCC, pRCC and chRCC) ™ to investigate whether ccRCC and
pRCC loci GWAS are enriched among the corresponding H3K27ac
peaks across multiple samples, Any GWAS identified loci was termed
o be overlapping only if it mapped to H3K27ac peaks for at least two
samples. Given that the authors identified astriking similarity among,
epigenetic profiles of pRCC and chRCC, we also performed an overlap
analysis of the GWAS loci associated with pRCC in the H3K 27ac peaks
ofchRCC samples. Lastly, toidentify the specificity of the overlapping
loci, we investigated whether the loci identified for ecRCC overlapped
with the H3K27ac peaks in at least one pRCC sample and vice versa,

Heritability and genetic correlation. GWAS heritability on the
liability scale was estimated using the GCTA™ v1.94.1 software and
individual-level data from the NCI-1, NCI-2 and Eur samples in NCI-3
scans, Analyses assumed a disease prevalence of Lo6%, were restricted
Lo SNPs of MAF =005, removed subjects with more than 5% of geno-
types missing and adjusted for sex, study and the top ten PCs. Genetic
correlation, in the observed scale, was computed through linkage
disequilibrium score regression using the 1000 Genomes EUR refer-
encepanel ",

PRS. We identified 324 805 unrelated Eur participants (L696 cases
and 323,109 controls) in UK Biobank for PRS analysis, with the PRS
constructed from the identified kidney cancer susceptibility loci that
are present in the Eur population stratum (= 107). Two baseline risk
prediction models were used for logistic regression: the first contained
sex and genetic principal components as covariates, while the second
model adjusted for these covariates as well as age at enrollment,
BMI, smoking status and hypertension. UK Biobank bgen files were
converted to a plink binary format using a hard-call-threshold 0.1

PLINK 2.0(ref. 67) —score was then used to calculate the PRS. AUC values
wiere calculated with the R pROC package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All GWAS summary statistics are available on dbGaP (phs 00350551 p1)
and GWAS Catalog (GCSTR0320043-GCSTR0320065), Individual-level
datafrom the new NCI-3 scan are available on dbGaP (phs003505.vLpl).
Data from previously published scans are alsoavailable on dbGaP (NCE-L,
phs00035Lv1.pl; NCI-2, phs001736.v2.pl; USKC, phs000863.v1pl;
IARC-2, phs001271.v1.pl: MDA and MDA-OncoArray, phs00 350501 pl).
The individual-level data from the IARC-1and UK scans have not been
deposited in dbGaP or any other data archive site given decisions by
theinstitutional ethics review boards for these projects. The datafrom
these scans are available upon reasonable request through internal
processes unigue to each institution. Such requests can be made in
writing to the principal investigators (IARC: P. Brennan, pbrennani@
iarc.fr and UK: R.H., richard. houlston@icr.ac.uk); the time frame from
request to receipt of datais approximately 4-6 weeks. The UK Biobank
analysis was conducted via application number 86140 (hueps:www.
ukbicbank.ac.uk/). TheFinnish biobank dataincludedin FinnGen canbe
accessed viaFingenious services at https:/site.fingenious.fifen/ (ref. 80)
managed by FINBB. Finnish Health register data can be applied for
via Findata at hteps:/findata.fi/en/data/ (ref. 81). The full GWAS results
ofthe BB) are available via the website of the Japanese ENcyclopedia of
GEnetic Associations by Riken (JENGER) at http://jengerrikenjplen/
(ref. 52; case—control GWAS no. 156). Function annotation enrichment.
was performed with the annotation data provided via the GARFIELD
package at https://www.ebi.ac.uk/bimey-srv/GARFIELD/ (ref. 83). Posi-
tion weight matrices for transcription factor-binding sites as cataloged
in HOCOMOCO were provided along with the motifbreakR R package.,
inthe associated MotifDb database. ChiP-5eq data reported by Schmid
etal.” are publicly available through the Gene Expression Omnibus
(GEQ) database under the accession codes: GSE120885 (HIF-1a, HIF-2a
and HIF-1B ChiP-seq in RCC4 cells) and GSEG7237 (HIF-2a and HIF-1{
ChiP-seq in 786-0 cells). Epigenomic charting data (H3K27ac peaks)
penerated by Massar etal_ are publicly availablethrough GEO database
under accession code GSE1ES486; the sample attributes arementioned
in Supplementary Table 1 of the corresponding paper. GTEx v8 and
TOGA data can be accessed via GTEx and Genomic Data Commons at
https:fgtexportal.orghome/ (ref, 84) and hutps:fportal gde.cancer.
gov/repository (ref, B3), respectively. Additionally, eQTLs for TCGA
wiere queried via the PancanQTL database at httpefgong labhzau.edu.
cn/PancanQTL/ (ref. B&).

Codeavailability

Code used in performing the liftover of summary statistics and
fixed-effects GWAS meta-analyses (version 2022-12-23) is available
via GitHub at https:/github.com/freeseek/score (refl 72). No previ-
ously unreported custom computer code or algorithm was used to
generate results,
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Extended Data Fig, 1| Plelotropic effects of kidney cancer locifor other
cancers and risk factors, Fleiotropy matrix summarizing kidney cancer
susceptibility loci with evidence of pleiotropic effects for ather cancers and/or
selected rizk factors (body mass index, hypertension, blood pressure, smoking)
fromsearches of GWAS Catalogand UK Biohank CWAS summary statistics. Cell

F

«cobors indicating associations withspecific traits: red, other cancers; blue, body
mass index; orange, hypertension or blood pressure; violet, smoking. Locus-trait
summary statistics listed in Supplementary Table 11 (GWAS Catalog) and 12 (UK
Biobank).
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Extended Data Fig. 2| Insilico analysis of enrichment for putative regulatory states (d) different genic locations. The enrichments are depicted for variants
annotations among kidney cancer locl. Enrichment of variants associatedwith  atdifferent p-value thresholds denoted by the colors and across different
overall RCC in (a) DNAse Hotspots (b) Histone modificationssites (c) Chromatin categories ineach panel. The results were computed using GARFIELD v2.



